invariant subspace meaning in Chinese
不变子空间
Examples
- One of the most important, most difficult, and most exasperating unsolved problems of operator theory is the problem of invariant subspaces .
算子理论中最重要、最困难也最令人烦恼的未解决问题之一就是不变子空间问题。 - The cheapest way to get one is to invoke the spectral theorem and to conclude that normal operators always have non-trivial invariant subspaces .
取得这样结果的最省力的尝试是引用光谱定理而得到正规算子恒有非平凡不变子空间的结论。 - In the third chapter , the perturbation of invariant subspace , singular subspaces and deflating subspaces are discussed
第三章讨论了不变子空间、奇异子空间对和收缩子空间对的扰动。 - In this paper , we discuss a new class of m - paranormal operators and give the properties of these operators . further , we also give an existence condition of the invariant subspace
讨论了一个新的算子类: m -仿正规算子.给出了这一类算子的部分性质及不变子空间存在的条件 - Numerical result shows that the new method is more efficient in convergence than the standard lanczos algorithm ; the second algorithm generalizes the implicitly restarted arnoldi ( ira ) augmented by soreesen to the implicitly restarted lanczos algorithm , which improves the convergence rate of lanczos algorithm by making good use of the spectral information obtained from the previous process . the last algorithm utilizes deflation strategies to the second algorithm to forming invariant subspace for a , so that the stability can be kept in computing process
数值试验表明,该算法比标准lanczos方法具有更好的收敛性;第二种算法是将求解特征值问题的隐式循环arnoldi方法( ira )应用于求解对称不定线性方程组的lanczos算法,充分利用lanczos算法过程中的谱信息,确定预处理;第三种算法是在第二种算法的基础上,运用收缩技巧,形成近似不变子空间,以提高收敛速度和数值稳定性。